MYF5 Rabbit pAb

Catalog No.: A16227 6 Publications

Basic Information

Observed MW

28kDa

Calculated MW

28kDa

Category

Primary antibody

Applications

WB,ELISA

Cross-Reactivity

Human, Mouse

Background

Predicted to enable DNA-binding transcription factor activity, RNA polymerase II-specific and RNA polymerase II cis-regulatory region sequence-specific DNA binding activity. Predicted to contribute to E-box binding activity. Predicted to be involved in several processes, including muscle cell fate commitment; positive regulation of cell differentiation; and skeletal muscle cell differentiation. Predicted to act upstream of or within several processes, including animal organ development; regulation of cell-matrix adhesion; and somitogenesis. Located in nucleoplasm.

Recommended Dilutions

WB 1:500 - 1:1000

ELISA

Recommended starting concentration is 1 µg/mL. Please optimize the concentration based on your specific assay requirements.

Immunogen Information

Gene ID Swiss Prot 4617 P13349

Immunogen

Recombinant protein (or fragment). This information is considered to be commercially sensitive.

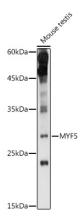
Synonyms

EORVA; bHLHc2; MYF5

Contact

a		400-999-6126
\bowtie		cn.market@abclonal.com.cn
\odot	T	www.abclonal.com.cn

Product Information


Purification Source Isotype Rabbit IgG Affinity purification

Storage

Store at -20°C. Avoid freeze / thaw cycles.

Buffer: PBS with 0.01% thimerosal,50% glycerol,pH7.3.

Validation Data

Western blot analysis of lysates from Mouse testis, using MYF5 Rabbit pAb (A16227) at 1:1000 dilution. Secondary antibody: HRP-conjugated Goat anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: $25\mu g$ per lane.

Blocking buffer: 3% nonfat dry milk in TBST.

Detection: ECL Basic Kit (RM00020).

Exposure time: 90s.